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Import Data and Fit Model

# Import data 
usa = read_csv("~/Desktop/state-2019.csv") 

  state      life_expectancy population income illiteracy murder_rate hs_grad frost  area 
  <chr>                <dbl>      <dbl>  <dbl>      <dbl>       <dbl>   <dbl> <dbl> <dbl> 
1 Alabama               75.4      49.0    23.6       14.8         7.8    85.3  42.8  5.08 
2 Alaska                78.8       7.32   33.1        9.2         8.2    92.4 200.  57.1  
3 Arizona               79.9      72.8    25.7       13.1         5.1    86.5  90.8 11.4  
4 Arkansas              75.9      30.2    22.9       13.7         7.2    85.6  62.5  5.21 
5 California            81.6     395.     30.4       23.1         4.4    82.5  27.5 15.6  
6 Colorado              80.5      57.6    32.4        9.9         3.7    91.1 168.  10.4  

# Create data frame that includes all rows/columns except the state names 
usa2 = usa[ , -1]) 

# Create data frame of standardized variables (no state names) 
z_usa = usa[ , -1]) %>% 
  data.frame() 

Our modeling goal is to explore the predictors of life expectancy. We have no a priori hypotheses about 
which predictors should be included in the model nor about the importance of these predictors.



Predict Life Expectancy

# Use all variables as predictors 
lm.all = lm(life_expectancy ~ ., data = usa2) 

# Examine output 
tidy(lm.all) 

  term           estimate   std.error statistic    p.value 
  <chr>             <dbl>       <dbl>     <dbl>      <dbl> 
1 (Intercept) 79.8876     12.0844      6.61078  4.26233e-8 
2 population   0.0806344   0.0390966   2.06244  4.51001e-2 
3 income       0.160090    0.0561521   2.85101  6.61109e-3 
4 illiteracy  -0.157523    0.0828696  -1.90086  6.38833e-2 
5 murder      -0.129908    0.105719   -1.22880  2.25678e-1 
6 hs_grad     -0.0364175   0.137427   -0.264995 7.92251e-1 
7 frost       -0.00622470  0.00693942 -0.897006 3.74598e-1 
8 area         0.0189268   0.0289705   0.653311 5.16955e-1     

Variables that are positively related to life 
expectancy are population, area, and income.

Variables that are negatively related to life 
expectancy are illiteracy rate, murder rate, days 

with a temperature below freezing, and graduation 
rate.

Only population, income, and maybe illiteracy rate 
are statistically significant.



Model Evaluation and Predictor Selection



Evaluating and Selecting Models

Once we have identified the criterion/metric to measure performance, we then need to 
determine how to select a model using this metric. For example, with a p-value, we 
might retain a predictor in the model if the p-value is less than some a priori defined 

threshold (e.g., p < .05).  

The threshold level will be different for exploratory and confirmatory analyses.

When we evaluate models (or predictors within a model) we do so by examining some 
criterion/metric of the model’s/predictor’s performance. For example, one criterion 

we use is the p-value. Another criterion we use at the model-level is the R2 value.

A third thing that we need to consider is the model-building strategy that we are going 
to employ as we use our metric to select a model(s). Will we add one predictor at a time 
into the model? In which order? Maybe we will include all the predictors and drop those 
that don’t meet our criteria. Should we drop them all at once or one-at-a-time? Once we 
drop them should we reconsider including them at other stages of the model-building 

process. When should we check collinearity? Assumptions?

• Predictors have, so far, been selected a 
priori (based on substantive work) 

• Most of our analytic work has focused on: 
‣ Identifying functional form of predictors 
‣ Examining and fixing problems with 

assumptions 

• When theory does not specify the 
predictor set, variable (model) selection is 
an important analytical problem



Model Purpose

Description 

• Purpose of the model is to describe the data, or to understand a complex system 

• Goal is to choose the smallest number of predictors that account for a substantial amount of variation in the outcome 

• Our goal has two competing requirements as explaining more variation in the outcome generally requires more predictors

Inference/Prediction 

• Purpose of the model is to predict the outcome/mean outcome for new cases or make inferences about the effects of predictors 

• Goal is prediction/inferential accuracy.  

• Performance in our sample is not as important as performance in future (out-of-sample) cases

The model’s purpose determines how we will measure “model success”. Each purpose 
points to a different criteria to use in the model evaluation process.



Model Evaluation Criteria

There are several criteria that have been proposed to evaluate model 
performance when the purpose is description. 

Sum of Squared Residuals

SSE =
X

(Yi � Ŷi)
2
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Residual Mean Square

R2
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Adjusted R2

When using criteria that measure the 
residual error (SSE, RMS), we want to select a 

model that minimize these values .

The adjusted R2 value penalizes the R2 value 
for model complexity, so when the number 

of predictors varies across the models, this is 
a better criterion.

When using an R2 value to evaluate model 
performance, we want to select a model that 

maximizes these values.



The criteria that have been proposed to evaluate model performance when the 
purpose is prediction/inference focus on measuring out-of-sample performance. 

Mallow’s Cp

AIC

BIC

Mallow’s Cp is an estimate of the average mean squared 
error of prediction. The Cp value should be near to the 

number of predictors in the model.

BIC has a larger penalty term than AIC, which is based on 
sample size and model complexity. It performs best when the 

“true” model is among the candidate models.

AIC has a penalty for model complexity. It must be computed 
on the same set of observations; no missing data. Corrected 

AIC has been found to perform better.AIC = n⇥ ln(
SSE

n
) + 2k
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In each of these formulae, k is the total number of parameters being estimated (including the residual variance).

Inference measures

t-value/p-value

These are at the predictor-level; not the model-level. Using 
the maximum p-value or minimum t-value can make this a 

model-level metric.



Computing Model Evaluation Criteria
# Compute minimum t-value 
min(tidy(lm.all)$statistic) 

[1] -1.90086 

# Compute maximum p-value 
max(tidy(lm.all)$p.value) 

[1] 0.7922506 

# Compute SSE and RMS 
anova(lm.all) 

# SSE = 31.668 
# RMS = 0.7197 

# Compute R2 and adj. R2 
glance(lm.all) 

# R2 = 0.379 
# Adj. R2 = 0.280

# Assign values for k and n 
k = 8; n = 52; sse = 31.668; rms = 0.7197 

# Compute Mallow’s Cp 
sse / rms + 2 * k - n 

[1] 8.001667 

# AIC 
aic_mod = n * log(sse / n) + 2 * k 
aic_mod 

[1] -9.788725 

# AICc 
aic_mod + (2 * (k + 2) * (k + 3)) / (n - k - 3) 

[1] -4.422871 

# BIC 
n * log(sse / n) + k * log(n) 

[1] 5.821225

These metrics are useful for 
summarizing a single model and for 

comparing models.

These metrics are not 
useful for summarizing a 

single model; only for 
comparing models.



Model Building Strategy



Model Building Strategy: Forward Selection

Determine the criteria/metric you will use to measure the performance of each model fitted and how to select a model using this 
metric. 

Forward Selection 

• Step 1: We fit each of the one-predictor models and measure the performance of each model using the criteria/metric chosen. The 
predictor from the model that has the best performance is retained. 

• Step 2: We then fit each of the two-predictor models that can be fitted with the predictor retained in Step 1. The predictors from the 
model that has the best performance are retained. 

We continue this process until we have either (a) fitted a model with all the predictors, or (b) hit some stopping/selection criteria that 
we have identified (e.g., stop once one of the p-values is greater than 0.05).

Once a predictor is 
retained in forward-
selection, it is always 

included in all later stages.

In our example, we will employ forward selection to adopt a model using the following performance metric and selection criteria:  

• Metric of Performance: Select the predictor with the highest t-value (absolute value). 

• Selection Criterion: All t-values for predictors in the model need to be greater than 1.



# Step 1: Fit all one-predictor models 
tidy(lm(life_expectancy ~ -1 + population, data = z_usa))  #t =  1.63 
tidy(lm(life_expectancy ~ -1 + income,     data = z_usa))  #t =  4.09 
tidy(lm(life_expectancy ~ -1 + illiteracy, data = z_usa))  #t = -0.45 
tidy(lm(life_expectancy ~ -1 + murder,     data = z_usa))  #t = -2.93 
tidy(lm(life_expectancy ~ -1 + hs_grad,    data = z_usa))  #t =  2.47 
tidy(lm(life_expectancy ~ -1 + frost,      data = z_usa))  #t =  1.19 
tidy(lm(life_expectancy ~ -1 + area,       data = z_usa))  #t =  0.38 

# Step 2: Fit all two-predictor models that include income 
tidy(lm(life_expectancy ~ -1 + income + population, data = z_usa))  #t =  1.71 
tidy(lm(life_expectancy ~ -1 + income + illiteracy, data = z_usa))  #t = -0.58 
tidy(lm(life_expectancy ~ -1 + income + murder,     data = z_usa))  #t = -1.37 
tidy(lm(life_expectancy ~ -1 + income + hs_grad,    data = z_usa))  #t =  0.46 
tidy(lm(life_expectancy ~ -1 + income + frost,      data = z_usa))  #t =  0.03 
tidy(lm(life_expectancy ~ -1 + income + area,       data = z_usa))  #t =  0.51 

# Step 3: Fit all three-predictor models that include income and population 
tidy(lm(life_expectancy ~ -1 + income + population + illiteracy, data = z_usa))  #t = -2.13 
tidy(lm(life_expectancy ~ -1 + income + population + murder,     data = z_usa))  #t = -1.54 
tidy(lm(life_expectancy ~ -1 + income + population + hs_grad,    data = z_usa))  #t =  1.50 
tidy(lm(life_expectancy ~ -1 + income + population + frost,      data = z_usa))  #t =  0.90 
tidy(lm(life_expectancy ~ -1 + income + population + area,       data = z_usa))  #t =  0.25 

# Step 4: Fit all four-predictor models that include income, population, and illiteracy 
tidy(lm(life_expectancy ~ -1 + income + population + illiteracy + murder,  data = z_usa))  #t = -1.08 
tidy(lm(life_expectancy ~ -1 + income + population + illiteracy + hs_grad, data = z_usa))  #t =  0.45 
tidy(lm(life_expectancy ~ -1 + income + population + illiteracy + frost,   data = z_usa))  #t = -0.35 
tidy(lm(life_expectancy ~ -1 + income + population + illiteracy + area,    data = z_usa))  #t =  0.13

Step 1: The best one-predictor 
model under this criterion 

includes income.

Step 2: The best two-predictor 
model under this criterion 

includes income and population.

Step 3: The best three-predictor 
model under this criterion 

includes income, population, and 
illiteracy.

Step 4: The best four-predictor 
model under this criterion 

includes income, population, 
illiteracy, and murder rate.

Note: Only the t-value for the added 
predictor is shown.



# Step 5: Fit all five-predictor models that include income, population, illiteracy, and murder_rate 
tidy(lm(life_expectancy ~ -1 + income + population + illiteracy + murder + hs_grad, data = z_usa))  #t = -0.31 
tidy(lm(life_expectancy ~ -1 + income + population + illiteracy + murder + frost,   data = z_usa))  #t = -0.77 
tidy(lm(life_expectancy ~ -1 + income + population + illiteracy + murder + area,    data = z_usa))  #t =  0.21 

# Step 6: Fit all six-predictor models that include income, population, illiteracy, murder_rate, and frost 
tidy(lm(life_expectancy ~ -1 + income + population + illiteracy + murder + frost + hs_grad, data = z_usa))  #t = -0.12 
tidy(lm(life_expectancy ~ -1 + income + population + illiteracy + murder + frost + area,    data = z_usa))  #t =  0.62 

# Step 7: Fit all seven-predictor models that include income, population, illiteracy, murder_rate, frost, and area 
tidy(lm(life_expectancy ~ -1 + income + population + illiteracy + murder + frost + area + hs_grad, data = z_usa))  #t = -0.27

Continue this process to determine the best four-, five-, six- and seven-predictor models

At each stage we could also check to see that all the predictors in the selected model meet our selection criterion that the t-value 
for all predictors is greater than 1. With this criteria we could have stopped after Stage 4 since not all of the t-values of the best 

model in Stage 5 were above 1.



  term        estimate std.error statistic    p.value 
  <chr>          <dbl>     <dbl>     <dbl>      <dbl> 
1 income      0.418421  0.131650   3.17827 0.00259272 
2 population  0.378425  0.145513   2.60063 0.0123322  
3 illiteracy -0.269648  0.149487  -1.80383 0.0775360  
4 murder     -0.146428  0.135083  -1.08399 0.283785 

Based on the forward-selection process and the criteria we adopted, we would adopt the best performing model from Stage 4.

The p-values are irrelevant as that did not factor into our selection criteria.  
(In fact, I would not even report them if I was using this selection criteria.)

ˆLife Expectancyi = 0.42(Incomei) + 0.38(Populationi)� 0.27(Illiteracy Ratei)� 0.15(Murderi)
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where all the variables in the equation are standardized.



Model Building Strategies: Backward Elimination

Backward Elimination 

• Step 0: We begin with a model that includes all of the predictors. 

• Step 1: We then fit each of the models that include all of the predictors except one, and measure the performance. The predictor that 
has the least decreases the performance is removed from the model. 

• We continue this process, at each stage removing the predictor that has the least impact on performance until we get down to an 
intercept-only model.

Once a predictor is removed, it is removed 
in all later stages.

# Step 0: Fit model with all predictors 
glance(lm(life_expectancy ~ . - 1,  data = z_usa))$r.squared  #R2 = 0.379 

# Step 1: Fit all models with one predictor removed 
glance(lm(life_expectancy ~ . -1 - population, data = z_usa))$r.squared  #R2 = 0.319 
glance(lm(life_expectancy ~ . -1 - income,     data = z_usa))$r.squared  #R2 = 0.264 
glance(lm(life_expectancy ~ . -1 - illiteracy, data = z_usa))$r.squared  #R2 = 0.328 
glance(lm(life_expectancy ~ . -1 - murder,     data = z_usa))$r.squared  #R2 = 0.357 
glance(lm(life_expectancy ~ . -1 - hs_grad,    data = z_usa))$r.squared  #R2 = 0.378 
glance(lm(life_expectancy ~ . -1 - frost,      data = z_usa))$r.squared  #R2 = 0.367 
glance(lm(life_expectancy ~ . -1 - area,       data = z_usa))$r.squared  #R2 = 0.373 

# Step 2: Fit all models with hs_grad and one other predictor removed 
glance(lm(life_expectancy ~ . -1 - hs_grad - population, data = z_usa))$r.squared  #R2 = 0.309 
glance(lm(life_expectancy ~ . -1 - hs_grad - income,     data = z_usa))$r.squared  #R2 = 0.232 
glance(lm(life_expectancy ~ . -1 - hs_grad - illiteracy, data = z_usa))$r.squared  #R2 = 0.324 
glance(lm(life_expectancy ~ . -1 - hs_grad - murder,     data = z_usa))$r.squared  #R2 = 0.352 
glance(lm(life_expectancy ~ . -1 - hs_grad - frost,      data = z_usa))$r.squared  #R2 = 0.366 
glance(lm(life_expectancy ~ . -1 - hs_grad - area,       data = z_usa))$r.squared  #R2 = 0.373 

Criteria: Select the model with the highest R2 value. 

Step 1: The model with the highest R2 removes high 
school graduation rate.

Step 2: The model with the highest R2 
removes high school graduation rate 

and area.



tidy(lm(life_expectancy ~ . -1 - hs_grad - area - frost - murder, data = z_usa)) 

  term        estimate std.error statistic     p.value 
  <chr>          <dbl>     <dbl>     <dbl>       <dbl> 
1 population  0.392355  0.145203   2.70212 0.00943906  
2 income      0.487685  0.115309   4.22936 0.000102091 
3 illiteracy -0.309651  0.145119  -2.13378 0.0378920 

Continue this process to determine the best four-, three-, two- and one-predictor models. At each stage we could also check 
to see that the selected model does not decrease the criteria beyond some threshold that is identified a priori. For example, 

we might stop when the R2-value is less than 0.3.  

With this criteria we could have stopped after Stage 4 since the R2 value of the best model in Stage 5 has an R2 value that is less 
than 0.3 .

Again, the p-values are irrelevant as that did not factor into our selection criteria. In fact, I would not even report them if I was 
using this selection criteria.

ˆLife Expectancyi = 0.39(Populationi)+0.49(Incomei)�0.31(Illiteracy Ratei)
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where all the variables in the equation are standardized.



Model Building Strategy: Stepwise Regression

Determine the criteria/metric you will use to measure the performance of each model fitted and how to select a model using this 
metric. 

Stepwise Regression 

• Use backward elimination, but at each step, the predictors that were removed in earlier steps can be considered for re-rentry into the 
model.   

We continue this process until we have hit some stopping/selection criteria that we have identified.

Once a predictor is 
removed, it might be re-
included in later stages.

This is a combination of backward elimination and forward selection.



Different model strategies, metrics of model 
performance, and criteria for model selection 

lead to different “final” models.

Many statistical programs have functionality 
that can automate these fitting strategies.

Although these packages can select a model based on some performance 
metric, there are several problems that automation does not solve: 

• It does not address the functional form of the predictors. 
• It does not address interactions. 
• It does not address outliers. 
• It does not address collinearity problems. 

Most common software  will require that you deal with these problems 
sequentially; first selecting the variables for the model and then 
determining their functional form, interactons, etc.

Before automating the selection process, it is 
important to understand the purpose of your 

model (is it to describe the data? make 
predictions? inference?). This often guides the 

choice of performance metrics and model 
building strategy.

Model Building Strategy: Some Considerations



Automated Model Building



Functions from the olsrr package perform automated forward selection, backward elimination, and stepwise 
regression using either the AIC or p-value as a performance metric. All of the functions require a lm object that 

includes all possible predictors.

# Load olsrr library 
library(olsrr)  

# Fit forward selection 
fs_output = ols_step_forward_aic(lm.all, details = TRUE)  

# Plot results 
plot(fs_output) 

The ols_step_forward_aic() and 
ols_step_forward_p() functions perform 
forward selection using the AIC and p-value, 

respectively, as a performance metric.

The ols_step_backward_aic() and 
ols_step_backward_p() functions from the 
olsrr package perform backward elimination 
using the AIC and p-value, respectively, as a 

performance metric.

The ols_step_both_aic() and 
ols_step_both_p() functions from the 

olsrr package perform stepwise regression 
using the AIC and p-value, respectively, as a 

performance metric.



 Step 0: AIC = 209.8146  
 life_expectancy ~ 1  

---------------------------------------------------------------------- 
Variable      DF      AIC      Sum Sq      RSS      R-Sq     Adj. R-Sq  
---------------------------------------------------------------------- 
income         1    197.033    39.438    119.950    0.247        0.232  
murder         1    203.710    23.001    136.386    0.144        0.127  
hs_grad        1    205.929    17.057    142.331    0.107        0.089  
population     1    209.174     7.892    151.495    0.050        0.031  
frost          1    210.386     4.319    155.069    0.027        0.008  
illiteracy     1    211.607     0.636    158.752    0.004       -0.016  
area           1    211.668     0.449    158.939    0.003       -0.017  
---------------------------------------------------------------------- 

Step 1 : AIC = 197.0327  
 life_expectancy ~ income  

---------------------------------------------------------------------- 
Variable      DF      AIC      Sum Sq      RSS      R-Sq     Adj. R-Sq  
---------------------------------------------------------------------- 
population     1    196.078     6.626    113.323    0.289        0.260  
murder         1    197.128     4.314    115.636    0.274        0.245  
illiteracy     1    198.680     0.811    119.139    0.253        0.222  
area           1    198.762     0.622    119.328    0.251        0.221  
hs_grad        1    198.813     0.505    119.445    0.251        0.220  
frost          1    199.032     0.002    119.948    0.247        0.217  
---------------------------------------------------------------------- 

 Step 2 : AIC = 196.0776  
 life_expectancy ~ income + population  

---------------------------------------------------------------------- 
Variable      DF      AIC      Sum Sq      RSS      R-Sq     Adj. R-Sq  
---------------------------------------------------------------------- 
illiteracy     1    193.457     9.635    103.689    0.349        0.309  
murder         1    195.610     5.251    108.072    0.322        0.280  
hs_grad        1    195.747     4.966    108.357    0.320        0.278  
frost          1    197.233     1.826    111.497    0.300        0.257  
area           1    198.012     0.143    113.180    0.290        0.246  
---------------------------------------------------------------------- 

All of the AIC values 
are higher when any 

new variables are 
added to the model.

 Step 3 : AIC = 193.4573  
 life_expectancy ~ income + population + illiteracy  

--------------------------------------------------------------------- 
Variable     DF      AIC      Sum Sq      RSS      R-Sq     Adj. R-Sq  
--------------------------------------------------------------------- 
murder        1    194.200     2.478    101.211    0.365        0.311  
hs_grad       1    195.238     0.436    103.253    0.352        0.297  
frost         1    195.324     0.265    103.424    0.351        0.296  
area          1    195.439     0.036    103.652    0.350        0.294  
---------------------------------------------------------------------- 

No more variables to be added.



The selected model includes income, 
population, and illiteracy rate.

Final Model Output  
------------------ 

                        Model Summary                          
------------------------------------------------------------- 
R                       0.591       RMSE               1.470  
R-Squared               0.349       Coef. Var          1.867  
Adj. R-Squared          0.309       MSE                2.160  
Pred R-Squared          0.181       MAE                1.120  
------------------------------------------------------------- 
 RMSE: Root Mean Square Error  
 MSE: Mean Square Error  
 MAE: Mean Absolute Error  

                              ANOVA                                 
------------------------------------------------------------------ 
               Sum of                                              
              Squares        DF    Mean Square      F        Sig.  
------------------------------------------------------------------ 
Regression     55.699         3         18.566    8.595     1e-04  
Residual      103.689        48          2.160                     
Total         159.388        51                                    
------------------------------------------------------------------ 

                                  Parameter Estimates                                     
---------------------------------------------------------------------------------------- 
      model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper  
---------------------------------------------------------------------------------------- 
(Intercept)    74.975         1.269                 59.104    0.000    72.424    77.525  
     income     0.162         0.039        0.488     4.186    0.000     0.084     0.240  
 population     0.095         0.036        0.392     2.674    0.010     0.024     0.166  
 illiteracy    -0.127         0.060       -0.310    -2.112    0.040    -0.247    -0.006  
---------------------------------------------------------------------------------------- 
>

ˆLife Expectancyi = 0.49(Incomei) + 0.39(Populationi)� 0.31(Illiteracy Ratei)
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where all the variables in the equation are standardized.



All Subsets Regression



Model Building Strategy: All Subsets Regression

Determine the criteria/metric you will use to measure the performance of each model fitted and how to select a model using this 
metric. 

All Subsets Regression 

• Fit all possible k-predictor models.   

Use the selection criteria to select frm among all the possible models.

Number of Models = 2p � 1
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# Fit all subsets of predictors 
all_output = ols_step_all_possible(lm.all) %>% 
    data.frame()  

# Output 
head(all_output) 

  mindex n predictors     rsquare         adjr     predrsq        cp      aic     sbic      sbc     msep      fpe       apc        hsp 
2      1 1     income 0.247434318  0.232383004  0.11556421  5.326316 197.0327 49.36238 202.8864 124.7515 2.491263 0.8127709 0.04895906 
4      2 1     murder 0.144310731  0.127196945 -0.15879139 12.633586 203.7105 55.53078 209.5642 141.8461 2.832639 0.9241444 0.05566789 
5      3 1    hs_grad 0.107015741  0.089156056 -0.05245937 15.276285 205.9289 57.58295 211.7826 148.0284 2.956099 0.9644230 0.05809416 
1      4 1 population 0.049515821  0.030506137 -0.01697460 19.350692 209.1738 60.58864 215.0276 157.5601 3.146445 1.0265229 0.06183489 
6      5 1      frost 0.027098563  0.007640534 -0.06480510 20.939164 210.3860 61.71282 216.2398 161.2761 3.220654 1.0507336 0.06329327 
3      6 1 illiteracy 0.003990589 -0.015929599 -0.09500651 22.576580 211.6067 62.84565 217.4604 165.1067 3.297149 1.0756902 0.06479659 

# Add AICc to output 
all_output = all_output %>% 
    mutate( 
     aic_c = aic + (2 * (n + 2) * (n + 3)) / (nrow(z_usa) - n - 3) 
    )  

  mindex n predictors     rsquare         adjr     predrsq        cp      aic     sbic      sbc     msep      fpe       apc        hsp    aic_c 
1      1 1     income 0.247434318  0.232383004  0.11556421  5.326316 197.0327 49.36238 202.8864 124.7515 2.491263 0.8127709 0.04895906 197.5327 
2      2 1     murder 0.144310731  0.127196945 -0.15879139 12.633586 203.7105 55.53078 209.5642 141.8461 2.832639 0.9241444 0.05566789 204.2105 
3      3 1    hs_grad 0.107015741  0.089156056 -0.05245937 15.276285 205.9289 57.58295 211.7826 148.0284 2.956099 0.9644230 0.05809416 206.4289 
4      4 1 population 0.049515821  0.030506137 -0.01697460 19.350692 209.1738 60.58864 215.0276 157.5601 3.146445 1.0265229 0.06183489 209.6738 
5      5 1      frost 0.027098563  0.007640534 -0.06480510 20.939164 210.3860 61.71282 216.2398 161.2761 3.220654 1.0507336 0.06329327 210.8860 
6      6 1 illiteracy 0.003990589 -0.015929599 -0.09500651 22.576580 211.6067 62.84565 217.4604 165.1067 3.297149 1.0756902 0.06479659 212.1067 

There are 127 
models outputted. 

The ols_step_all_possible() function from the olsrr package can be used to 
exhaustively fit a set of models.

The function takes an lm object 
with all potential predictors. We 
also coerce the output to a data 

frame.

Number of Models = 27 � 1 = 127
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# Get best model 
all_output %>% 
  filter(aic_c == min(aic_c))  

  mindex n                   predictors   rsquare      adjr   predrsq       cp      aic     sbic      sbc     msep      fpe       apc        hsp    aic_c 
1     29 3 population income illiteracy 0.3494565 0.3087975 0.1814021 2.097091 193.4573 46.87937 203.2136 112.4283 2.326347 0.7589674 0.04596127 194.7617

Select model(s) with the lowest AICc

To obtain the coefficients, fit the model using population, income, 
and illiteracy to predict variation in life expectancy.

ˆLife Expectancyi = �̂0 + �̂1(Populationi) + �̂2(Illiteracy Ratei) + �̂3(Areai)
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# Get best k-predictor models 
all_output %>% 
  group_by(n) %>% 
  filter(aic_c == min(aic_c)) %>% 
  ungroup() %>% 
  arrange(aic_c)  

  mindex     n predictors                                        rsquare     adjr   predrsq      cp     aic    sbic     sbc    msep     fpe      apc       hsp   aic_c 
   <int> <int> <chr>                                               <dbl>    <dbl>     <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>    <dbl>     <dbl>   <dbl> 
1     29     3 population income illiteracy                     0.349456 0.308798  0.181402 2.09709 193.457 46.8794 203.214 112.428 2.32635 0.758967 0.0459613 194.762 
2     64     4 population income illiteracy murder              0.365001 0.310959 -0.218784 2.99561 194.200 48.1383 205.907 112.128 2.36049 0.770105 0.0468136 196.066 
3      8     2 population income                                0.289009 0.259989  0.141506 4.38037 196.078 48.6988 203.883 120.315 2.44615 0.798051 0.0481816 196.929 
4      1     1 income                                           0.247434 0.232383  0.115564 5.32632 197.033 49.3624 202.886 124.751 2.49126 0.812771 0.0489591 197.533 
5     99     5 population income illiteracy murder frost        0.372834 0.304664 -0.290870 4.44058 195.554 49.9681 209.213 113.205 2.42384 0.790775 0.0482911 198.100 
6    120     6 population income illiteracy murder frost area   0.378061 0.295135 -0.392393 6.07022 197.119 52.0039 212.729 114.813 2.49942 0.815432 0.0500654 200.468 
7    127     7 population income illiteracy murder hs_grad fro… 0.379052 0.280264 -0.793953 8       199.036 54.3096 216.597 117.296 2.59541 0.846748 0.0523105 203.322

Several model have an AICc within 4 from the 
minimum AICc.



# Get models with 20 lowest AIC values 
all_output %>% 
    arrange(aic_c)  

    mindex n                                             predictors    aic_c 
1       29 3                           population income illiteracy 194.7617 
2       64 4                    population income illiteracy murder 196.0664 
3       30 3                               population income murder 196.9147 
4        8 2                                      population income 196.9287 
5       31 3                              population income hs_grad 197.0518 
6       65 4                   population income illiteracy hs_grad 197.1051 
7       66 4                     population income illiteracy frost 197.1910 
8       67 4                      population income illiteracy area 197.3059 
9        1 1                                                 income 197.5327 
10       9 2                                          income murder 197.9792 
11      99 5              population income illiteracy murder frost 198.0998 
12      32 3                                population income frost 198.5373 
13     100 5            population income illiteracy murder hs_grad 198.6384 
14     101 5               population income illiteracy murder area 198.6978 
15      68 4                       population income murder hs_grad 199.0321 
16      33 3                                 population income area 199.3164 
17      69 4                          population income murder area 199.3552 
18      70 4                         population income murder frost 199.3807 
19     102 5             population income illiteracy hs_grad frost 199.4163 
20      10 2                                      income illiteracy 199.5312 

Remember that models that have similar AICc values are all viable candidates.

Several model have an AICc within 4 from the 
minimum AICc.



# Get the 10 best models 
ten_best = all_output %>% 
  arrange(aic_c) %>% 
  filter(row_number() <= 10) 

# Load library for labeling 
library(ggrepel) 

# Plot the models 
ggplot(data = ten_best, aes(x = as.numeric(rownames(ten_best)), y = aic_c)) + 
  geom_line(group = 1) + 
  geom_point() + 
  geom_label_repel(aes(label = predictors), size = 3) + 
  theme_bw() + 
  scale_x_continuous(name = "Ten Best Models", breaks = 1:10) + 
  ylab(“AICc") 

The models with the lowest 
AIC values all seem to 

include population, income, 
and illiteracy.

It can be useful to examine the predictors from the best models. (Here I do that in a plot, but 
it could also be done in a table.) This can help identify substantively important predictors.



In general the evidence around using automated selection methods is 
that these methods are subpar. If you need to use these methods 

backward elimination seems to be the best method to use. (Stepwise 
regression consistently performs the worst.) Also, information criteria 
(AIC, BIC) seems to be the best criterion when using these methods.

The essential problems with these methods have been summarized by Harrell (2001): 

• R2 values are biased high 
• The F-statistics are not F-distributed. 
• The standard errors of the parameter estimates are too small. 

• Consequently, the confidence intervals around the parameter estimates are too 
narrow. 

• p-values are too low, due to multiple comparisons, and are difficult to correct. 
• Parameter estimates are biased away from 0. 
• Collinearity problems are exacerbated. 

In sum, the parameter estimates are likely to be too far away from zero; the variance 
estimates for those parameter estimates are not correct; which implies that the 
confidence intervals and hypothesis tests will be wrong; and there are no reasonable 
ways of correcting these problems!

As Flom (2018) writes, “Most 
devastatingly, it allows the analyst 
not to think. Put in another way, 

for a data analyst to use stepwise 
methods is equivalent to telling 
his or her boss that his or her 

salary should be cut.”

99 Problems…
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In simulation studies, even when 
the true set of predictors are 

included in the subset of 
regression models, automated 

strategies may not identify such 
these predictors in the best 

models (Miller, 2018).
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