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We have previously defined the population regression model (using scalar algebra) as:

𝑦𝑖 = 𝛽0 + 𝛽1(𝑥𝑖) + 𝜖𝑖

where the outcome (y) is assumed to be statistically and linearly related to the predictor (x) and 𝜖. We also assume that
the error term, 𝜖, is a random variable.

Recall that the least squares estimators can be analytically computed as:

𝑏1 = ∑(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)
∑(𝑥𝑖 − ̄𝑥)2

𝑏0 = ̄𝑦 − 𝑏1( ̄𝑥)

Representing the Population Regression Model Using Matrix Algebra

Using the subject-specific subscripts (1, 2, 3, … , 𝑛), we can write out each subject’s equation:

𝑦1 = 𝛽0 + 𝛽1(𝑥1) + 𝜖1
𝑦2 = 𝛽0 + 𝛽1(𝑥2) + 𝜖2
𝑦3 = 𝛽0 + 𝛽1(𝑥3) + 𝜖3

⋮ ⋮ ⋮ ⋮
𝑦𝑛 = 𝛽0 + 𝛽1(𝑥𝑛) + 𝜖𝑛

These can be arranged into a set of vectors and matrices, namely,

⎡
⎢
⎢
⎢
⎣

𝑦1
𝑦2
𝑦3
⋮

𝑦𝑛

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 𝑥1
1 𝑥2
1 𝑥3
⋮
1 𝑥𝑛

⎤
⎥
⎥
⎥
⎦

[𝛽0
𝛽1

] +
⎡
⎢
⎢
⎢
⎣

𝜖1
𝜖2
𝜖3
⋮

𝜖𝑛

⎤
⎥
⎥
⎥
⎦

y = X𝛽 + 𝜖

where,

• y is an 𝑛 × 1 vector of observations on the outcome variable.
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• X is an 𝑛 × 𝑘 matrix (called the design matrix) consisting of a column of ones and the observations for k inde-
pendent predictors. In the simple regression example, 𝑘 = 2, and the design matrix has two columns—a column
of ones and a column of observations for the predictor X.

• 𝛽 is a 𝑘 × 1 vector of unknown population parameters that we want to estimate. In the simpke regression model,
b is a 2 × 1 vector consisting of 𝛽0 and 𝛽1.

• 𝜖 is a 𝑛 × 1 vector of residuals.

Estimating the Regression Coefficients

In a regression analysis, one goal is often to estimate the values of the parameters in the 𝛽 vector using sample data (i.e.,
the y and x values.We denote the estimates of the regression parameters using the roman letters; the vector of the sample
estimates for the 𝛽-values are denoted as b. Similarly the sample residuals are denoted as e rather than 𝜖. (It is common
to refer to the population errors as “errors” and the sample estimates as “residuals.”) Thus, the sample equivalent of the
model is:

y = Xb + e

In ordinary least squares (OLS) estimation, the estimated coefficients minimize the sum of the squared sample residuals
(i.e., the SSE). Using scalar algebra, the SSE can be expressed as: SSE = ∑ 𝑒2

𝑖 . The SSE can be expressed in matrix
notation as:

SSE = e⊺e

= [𝑒1 𝑒2 𝑒3 … 𝑒𝑛]
⎡
⎢
⎢
⎢
⎣

𝑒1
𝑒2
𝑒3
⋮

𝑒𝑛

⎤
⎥
⎥
⎥
⎦

Re-arranging the sample regression equation, we can express the residual vector as e = y − Xb. The SSE can then be
expressed as:

SSE = (y − Xb)⊺(y − Xb)

This can be re-written as:

SSE = y⊺y − b⊺X⊺y − y⊺Xb + b⊺X⊺Xb

= y⊺y − 2b⊺X⊺y + b⊺X⊺Xb

To find the values for the elements in b that minimize the equation, we use calculus to differentiate this expression with
respect to b
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Although calculus, especially calculus on matrices, is beyond the scope of this course, Fox
(2009) gives the interested reader some mathematical background on optimization (i.e., min-
imizing). For now you just need to understand we can optimize a function by computing its
derivative, setting the derivative equal to 0, and solve for any remaining unknowns.

This gives the expression:

(X⊺X)b = X⊺y

This expression is referred to as the Normal Equations. Note that the (X⊺X) matrix has two important properties:

• It is square; and
• It is symmetric.

To solve for the elements in b, we pre-multiply both sides of the equation by (X⊺X)−1.

(X⊺X)−1(X⊺X)b = (X⊺X)−1(X⊺y)

Ib = (X⊺X)−1X⊺y

b = (X⊺X)−1X⊺y

As long as (X⊺X)−1 exists, the vector of regression coefficients is given as:

b = (X⊺X)−1X⊺y

This implies that the vector of regression coefficients can be obtained directly throughmanipulation of the designmatrix
and the vector of outcomes. In other words, the OLS coefficients is a direct function of the data. Note that as of yet, we
have made no assumptions about the residuals. The coefficients can be estimated making no assumptions about the
distributions of the residuals.

Extending the Model

Using matrix algebra to compute the OLS regression coefficients gives us the same values as using the analytic formulas.
So why use matrix algebra? The simple reason is that we can use the same matrix algebra computation of b regardless of
how many predictors we include in the model (it is extensible). The analytic formulas change and become quite difficult
to manipulate. For example, consider an example where we want to estimate the coefficients for a model that includes
two main effects (𝑥1 and 𝑥2) and an interaction between these effects. The population model written in scalar algebra
is:

𝑦𝑖 = 𝛽0 + 𝛽1(𝑥1𝑖) + 𝛽2(𝑥2𝑖) + 𝛽3(𝑥1𝑖)(𝑥2𝑖) + 𝜖𝑖

If we express this using matrix notation, we get:

⎡
⎢
⎢
⎢
⎣

𝑦1
𝑦2
𝑦3
⋮

𝑦𝑛

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 𝑥11 𝑥21 𝑥11(𝑥21)
1 𝑥12 𝑥22 𝑥12(𝑥22)
1 𝑥13 𝑥23 𝑥13(𝑥23)
⋮ ⋮ ⋮ ⋮
1 𝑥1𝑛 𝑥2𝑛 𝑥1𝑛(𝑥2𝑛)

⎤
⎥
⎥
⎥
⎦

⎡
⎢⎢
⎣

𝛽0
𝛽1
𝛽2
𝛽3

⎤
⎥⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

𝜖1
𝜖2
𝜖3
⋮

𝜖𝑛

⎤
⎥
⎥
⎥
⎦

y = X𝛽 + 𝜖
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Adding predictors expands the size of the design matrix and the length of the 𝛽 matrix, but the compact notation
(y = X𝛽 + 𝜖) is exactly the same, so estimating the values in the b vector for multiple regression models is identical to
doing so for the simple regression model!

Properties of the OLS Estimators

One property of theOLS estimators (in simple ormultiple regression) is that theyminimize the sumof squared residuals.
There are also several other properties that the OLS estimators have. (Note: We derive these properties for the simple
regression model, but they also can be extended for the multiple regression model.) Remember these estimators are
based on the normal equations:

X⊺Xb = X⊺y

If we substitute Xb + e in for y in this expression, we get:

X⊺Xb = X⊺(Xb + e)

= X⊺Xb + X⊺e

To make this equality work, implies that:

X⊺e = 0

Let’s examine X⊺e:

X⊺e = 0

[ 1 1 1 … 1
𝑋1 𝑋2 𝑋3 … 𝑋𝑛

]
⎡
⎢
⎢
⎢
⎣

𝑒1
𝑒2
𝑒3
⋮

𝑒𝑛

⎤
⎥
⎥
⎥
⎦

= 0

[ 𝑒1 + 𝑒2 + 𝑒3 + … + 𝑒𝑛
𝑋1𝑒1 + 𝑋2𝑒2 + 𝑋3𝑒3 + … + 𝑋𝑛𝑒𝑛

] = [0
0]

This implies that for every column in the design matrix, X𝑘, that X⊺
𝑘 e = 0. In other words, the dot product between X𝑘

and e is zero indicating that the two vectors are independent.

P.1: The observed values of the predictor(s) are uncorrelated with the sample residuals.

Note that this does not mean that the predictor(s) are uncorrelated with the residuals in the population; that is an
assumption we will have to make later on.

4



Properties of the OLS Regressors

If the regression model includes an intercept (the first column of the design matrix is a ones vector) then the following
properties also hold.

P.2: The sum of the sample residuals is 0.

If the first columnof the designmatrix is a ones vector, then the first element of theX⊺ematrix is 𝑒1+𝑒2+𝑒3+…+𝑒𝑛 =
∑ 𝑒𝑖, which is equal to zero since X⊺e = 0.

P.3: The mean of the sample residuals is zero.

Since the mean of the residuals is computed as ̄e = ∑ 𝑒𝑖
𝑛 , and the sum (numerator) is zero, then the mean is also zero.

P.4: The regression line passes through the point (�̄�, ̄𝑌 ).
Remember that e = y − bX. This means that:

∑ e = ∑ (y − Xb)

= ∑ y − ∑Xb

= ∑ y − b∑X

If we divide this expression by n, we get

∑ e
𝑛 = ∑ y

𝑛 − b∑X
𝑛

̄e = ̄𝑦 − b ̄𝑥

But, the mean of the residuals is zero, so:

0 = ̄𝑦 − b ̄𝑥

̄𝑦 = b ̄𝑥

That is, the predicted y-value when the mean of X is used as a predictor is the mean of Y. In other words, the point
(�̄�, ̄𝑌 ) is on the regression line.

P.5: The predicted y-values are uncorrelated with the sample residuals.

Since ̂y = Xb then ̂y⊺ = (Xb)⊺. If we post-multiply both sides of this expression by the residual vector e, we get:
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̂y⊺e = (Xb)⊺e

= b⊺X⊺e

Since X⊺e = 0, then ̂y⊺e = 0. This implies that ̂y and e are uncorrelated.

P.6: The mean of the predicted y-values is equal to the mean of the observed y-values.

We can make use of the fact that y = ̂y + e. Taking the sum of both sides of the expression and dividing by n, we get:

∑ y
𝑛 = ∑ ̂y

𝑛 + ∑ e
𝑛

̄𝑦 = ̄̂𝑦 + 0

̄𝑦 = ̄̂𝑦

IMPORTANT: These properties will always be true. They do not rely on any distribu-
tional assumptions of the residuals. Furthermore, these properties do not tell us any-
thing about how ”good” the coefficient estimates (**b**) are. Nor do these properties
allow us to make inferences about the true parameters (𝛽).
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