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Recall that there are a certain set of assumptions underlying the linear regression model (both the simple and multiple
regression models). These assumptions are:

• A.1:Themodel is correctly specified.
• A.2:The design matrix, X, is of full rank.
• A.3:The population errors given X have a mean of zero.
• A.4:The population errors given X are homoscedastic.
• A.5:The population errors given X are independent.
• A.6:The predictor values are fixed with finite, non-zero variance.

Another assumption that is useful for inference is:

• A.7:The population errors given X are normally distributed

Sampling Distribution of the OLS Estimators

When X is fixed, the b vector can be written as a linear transformation of the response vector y:

b = (X⊺X)−1X⊺y

= My

whereM = (X⊺X)−1X⊺.

Previously we showed that the estimator b are unbiased estimates of𝛽, that is𝔼(b) = 𝛽.We can also define the variance–
covariance matrix of b.

Var(b) = MVar(y)M⊺

= [(X⊺X)−1X⊺]𝜎2
𝜖 I[(X⊺X)−1X⊺]⊺

Rearranging this and using our rules of transposes and inverses, we get:

Var(b) = [(X⊺X)−1X⊺]𝜎2
𝜖 I[(X⊺X)−1X⊺]⊺

= 𝜎2
𝜖 (X⊺X)−1X⊺X(X⊺X)−1

= 𝜎2
𝜖 (X⊺X)−1
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This implies that the sampling variances and covariances of the estimators depend only on the predictor values and the
error variance. This matrix is often reffered to as V.

Note that to derive this, we only need the assumption of linearity.The normality assumption is not used to compute the
mean (expectation) nor the sampling variance, nor covariances of the estimators. However, if the errors (and hence y)
are normally distributed (i.e., assumptionA.7), then so are the sampling distributions of the estimators. We can express
these distributions as:

b ∼ 𝒩(𝛽, 𝜎2
𝜖 (X⊺X)−1)

Inference for the Estimators

An individual estimator, 𝑏𝑗, has a sampling distribution of:

𝑏𝑗 ∼ 𝒩(𝛽𝑗, V𝑗𝑗)

where V𝑗𝑗 is the element in the jth row and jth column of the variance–covariance matrix for b. To test the hypothesis
that:

𝐻0 ∶ 𝛽𝑗 = 𝛽(0)
𝑗

where 𝛽(0)
𝑗 is some value (e.g., 𝐻0 ∶ 𝛽𝑗 = 0), we compute the ratio:

𝑍0 =
𝑏𝑗 − 𝛽(0)

𝑗
√V𝑗𝑗

which is unit-normal distributed;𝒩(0, 1). Note the denominator is the standard deviation of the sampling distribution
for 𝑏𝑗.

Unfortunately, in practice we do not know 𝜎𝜖 to compute V. Instead, we substitute in the estimate for this value from
our sample, the unbiased estimator 𝑠𝑒, where:

𝑠2
𝑒 = e⊺e

𝑛 − 𝑘 − 1
where n is the sample size, k is the number of predictors in the model, and 𝑛 − 𝑘 − 1 is the residual degrees of freedom
for the model. Thus, we get an estimate of the variance–covariance matrix using:

̂Var(b) = 𝑠2
𝑒(X⊺X)−1

= e⊺e
𝑛 − 𝑘 − 1(X⊺X)−1

The standard error for 𝑏𝑗 is then estimated using the jth diagonal element of this matrix, namely √ ̂𝑣𝑗𝑗.
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There is a theorem which says that (1) if 𝑍 is a standard normal variable and 𝑊 is
chi-squared distributed with 𝜈 degrees of freedom, and (2) 𝑍 and 𝑊 are independent,
then 𝑇 , defined as:

𝑇 = 𝑍
√𝑊/𝜈

will follow a 𝑡-distribution with 𝜈 degrees of freedom.

Since it can be shown that (𝑛 − 𝑘 − 1) 𝑠2
𝑒

𝜎2𝜖
follows a chi-squared distribution with 𝑛 − 𝑘 − 1 degrees of freedom, and

also that 𝐵𝑗 and 𝑠2
𝑒 are independent; it follows that:

𝑡 =
𝑏𝑗 − 𝛽(0)

𝑗
√V𝑗𝑗

is 𝑡-distributed with 𝑛 − 𝑘 − 1 degrees of freedom. To evaluate the hypothesis that 𝐻0 ∶ 𝛽𝑗 = 𝛽(0)
𝑗 , we compute the

test statistic:

𝑡0 =
𝑏𝑗 − 𝛽(0)

𝑗
√V𝑗𝑗

and evaluate it within the t-distribution having 𝑛 − 𝑘 − 1 degrees of freedom (where n is the sample size, and k is the
number of predictors in the model).

Confidence Intervals

A 1 − 𝛼% confidence interval can also be constructed for each coefficient using:

CI1−𝛼 = 𝑏𝑗 ± |𝑡∗
𝛼/2|[𝑠𝑒(X⊺X)−1]

= 𝑏𝑗 ± |𝑡∗
𝛼/2|(√V𝑗𝑗)

where 𝑡∗
𝛼/2 is the critical value demarcating the area in the 𝛼/2 proportion of the distribution in the t-distribution with

𝑛 − 𝑘 − 1 degrees of freedom. Fo example, if we wanted to compute a 95% CI, then 𝛼 = 0.05 and 𝑡∗ would be the
critical value that demarcates the lowest 0.025 of the distribution.

Model-Level Inference

At the model-level we are interested in testing the hypothesis 𝐻0 ∶ 𝜌2 = 0. Recall this is equivalent to testing the
hypothesis that all the regression parameters (except the intercept) in the model are zero:

𝐻0 ∶ 𝛽1 = 𝛽2 = 𝛽3 = … = 𝛽𝑘

This is a specific form of the general linear hypothesis which can be expressed as:

𝐻0 ∶ L𝛽 = c

where,

3



• L is a 𝑞 × (𝑘 + 1) matrix referred to as the hypothesis matrix, where q is the number of parameters being tested;
• 𝛽 is a (𝑘 + 1) × 1 vector of parameters included in the model; and
• c is a 𝑞 × 1 vector of hypothesized values.

As an example, if we wanted to test the model-level null hypothesis in a two predictor model (𝑦𝑖 = 𝛽0 + 𝛽1(𝑥1𝑖) +
𝛽2(𝑥2𝑖) + 𝜖𝑖),

𝐻0 ∶ 𝛽1 = 𝛽2 = 0

Then the general linear hypothesis could be expressed as:

𝐻0 ∶ [0 1 0
0 0 1] ⎡⎢

⎣

𝛽0
𝛽1
𝛽2

⎤⎥
⎦

= [0
0]

This results in:

𝐻0 ∶ [𝛽1
𝛽2

] = [0
0]

We can construct a test statistic, 𝐹0, as:

𝐹0 = (Lb − c)⊺[L(X⊺X)−1L⊺]−1(Lb − c)
𝑞(𝑠2𝑒)

This follows an F-distribution with q and 𝑛 − 𝑘 − 1 degrees of freedom

Implications for Applied Researchers

If the assumptions underlying the strong classical regression model (A.1–A.7) are all valid, then the OLS estimators
𝑏0, 𝑏1, … , 𝑏𝑘 are good estimators of𝛽0, 𝛽1, … , 𝛽𝑘.They are unbiased and efficient and have accurate sampling variances
and covariance (i.e., they are BLUE).

Of course, any of the assumptions may be challenged either on a priori substantive grounds, or post hoc, via empirical
examination of the sample residuals. If one (or more) of the assumptions are violated, then some of the properties may
be compromised. Let’s look at violation in turn:

Violating A.1: The model is not correctly specified.

This is probably the most egregious and costly violation. Violating this assumption means that the theoretical model
embodied in the regression equation is wrong. If this is the case, there is no use proceeding.

Violating A.2: The design matrix, X, is not of full rank.

This would mean that we cannot compute an inverse for the X⊺X matrix. Subsequently, we could not compute any
parameter estimates nor SEs.
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Violating A.3: The population errors given X do not have a mean of zero.

The estimator 𝑏0 will be biased when this assumption is violated. However, the other regression estimators (e.g.,
𝑏1, 𝑏2, … , 𝑏𝑘) are still BLUE. Unfortunately, we can never test this assumption in practice since ∑ 𝑒𝑖 = 0 always holds
when using OLS.

Violating A.4: The population errors given X are heteroscedastic.

If the assumption of constant variance is violated, the coefficient estimators will remain unbiased. However, the esti-
mates for the variances/standard errors for these coefficients will be wrong. This also impacts the confidence intervals
and hypothesis tests for these parameters. There are solutions to this problem, including using a different estimation
method (e.g., weighted least squares) or estimating the sampling variances for these coefficients differently (e.g., sand-
wich estimation).

Violating A.5: The population errors given X are not independent.

If the errors are correlated (not independent), the coefficient estimators will still be unbiased. Again, however, the vari-
ances/standard errors and results from the confidence intervals and hypothesis tests will be wrong. Often the hypothesis
tests will indicate statistical significance much more often then it should (increased probability of a type I error). Deal-
ing with this problem requires using models that account for the correlation (e.g., mixed-effects models) and different
estimation methods (e.g., maximum likelihood).

Violating A.6: The predictor values are not fixed.

When X is fixed, the predictors are uncorrelated with the error terms. This is what leads to unbiased estimates of both
the estimators and the variances/standard errors. When X is random (which is almost always the case in observational
data), we need to assume that Cov(X, 𝜖) = 0. That is we assume that the predictor values are generated by a mechanism
unrelated to the errors. If that is not the case, then the OLS estimates will be biased.

Violating A.7: The population errors given X are not normally distributed.

Violation of the normality assumption causes the least number of problems. Under non-normality the regression esti-
mators are still BLUE, and 𝑠2

𝑒 is still an unbiased estimator of 𝜎2
𝜖 . However, the under non-normality, the use of the F-

and t-distributions for inference is questionable especially if the sample size is small. If the sample size is large, the sam-
pling distributions of the coefficients are approximately normal and subsequently the use of the F- and t-distributions
for inference is justified.
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