References

American Psychological Association. (2019). Publication manual of the American Psychological Association (7th ed.). Author.

Balanda, K. P., & MacGillivray, H. L. (1988). Kurtosis: A critical review. The American Statistician, 42(2), 111–119.

Bowman, A., & Azzalini, A. (1997). Applied smoothing techniques for data analysis: The kernel approach with S-Plus illustrations. Oxford University Press.

Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In R. Launer & G. Wilkinson (Eds.), Robustness in statistics (pp. 201–236). Academic Press.

Box, G. E. P., & Draper, N. R. (1987). Empirical model-building and response surfaces. Wiley.

Darlington, R. B. (1970). Is kurtosis really “peakedness?”. The American Statistician, 24(2), 19–22.

Deheuvels, P. (1977). Estimation nonparamètrique de la densitè par histogrammes gènèralisès. Rivista Di Statistica Applicata, 25, 5–42.

Dyson, F. J., & Cantab, B. A. (1943). A note on kurtosis. Journal of the Royal Statistical Society, 106(4), 360–361.

Epanechnikov, V. A. (1969). Nonparametric estimation of a multivariate probability density. Theory of Probability and Its Applications, 14, 153–158.

Finucan, H. M. (1964). A note on kurtosis. Journal of the Royal Statistical Society. Series B (Methodological), 26(1), 111–112.

Freedman, D., & Diaconis, P. (1981). On the histogram as a density estimator: \(\mathrm{L}_2\) Theory. Zeitschrift Für Wahrscheinlichkeitstheorie Und Verwandte Gebiete, 57, 453–476.

General Statistical Office. (2001). Statistical yearbook. Statistical Publishing House.

Haughton, D., Haughton, J., & Phong, N. (2001). Living standards during an economic boom: The case of vietnam. Statistical Publishing House; United Nations Development Programme.

Joanes, D. N., & Gill, C. A. (1998). Comparing measures of sample skewness and kurtosis. The Statistician, 47(Part 1), 183–189.

Leaf, M. (2002). A tale of two villages: Globalization and peri-urban change in china and vietnam. Cities, 19(1), 23–31.

Moors, J. J. A. (1986). The meaning of kurtosis: Darlington reexamined. The American Statistician, 40(4), 283–284.

Mosteller, F., & Tukey, J. W. (1977). Data analysis and regression. Addison-Wesley.

Portnoy, S., & Koenker, R. (1989). Adaptive L estimation of linear models. Annals of Statistics, 17, 362–381.

Rissanen, J., Speed, T., & Yu, B. (1992). Density estimation by stochastic complexity. IEEE Trans. On Information Theory, 38, 315–323.

Sain, S. R. (1994). Adaptive kernel density estimation [PhD thesis]. Rice University.

Scott, D. W. (1979). On optimal and data-based histograms. Biometrika, 66, 605–610.

Sheather, S. J. (2004). Density estimation. Statistical Science, 19(4), 588–597.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. Chapman; Hall.

Simonoff, J. S. (1996). Smoothing methods in statistics. Springer.

Student. (1927). Errors of routine analysis. Biometrika, 19(1/2), 151–164.

Sturges, H. (1926). The choice of a class-interval. Journal of the American Statistical Association, 21, 65–66.

Terrell, G. R. (1990). The maximal smoothing principle in density estimation. Journal of the American Statistical Association, 85(410), 470–477.

Terrell, G. R., & Scott, D. W. (1992). Variable kernel density estimation. The Annals of Statistics, 20, 1236–1265.

Wand, M. P. (1997). Data-based choice of histogram bin width. The American Statistician, 51, 59–64.

WorldBank. (1999). World development indicators 1999. CD-ROM; WorldBank.

Zieffler, A. S., Harring, J. R., & Long, J. D. (2011). Comparing groups: Randomization and bootstrap methods using R. Wiley.